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Improved layer peeling algorithm for
strongly reflecting fiber gratings
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An improved algorithm based on the layer peeling (LP) method is proposed and demonstrated. The new
method is shown to be effective for mitigating the impact of numerical errors on reconstruction of coupling
function for strongly reflecting Bragg gratings. As examples, a flat-top dispersion-free fiber grating and a
fiber-grating dispersion compensator are designed by the improved LP method. For a chirp grating, more
accurate results are demonstrated in comparison with those obtained by the integral layer peeling (ILP)
method.
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Bragg gratings based on circular optical fibers and planar
optical waveguides are important elements in a variety
of applications ranging from telecommunications, signal
processing, to sensing[1,2]. As the fabrication technolo-
gies for realizing such gratings with complex distribution
functions become more mature, there has been a strong
interest in efficient and accurate numerical techniques
for synthesis of the Bragg gratings to achieve desirable
transmission and reflection spectral responses.

Several synthesis methods have been developed and re-
ported based on the coupled-mode formalisms that de-
scribe the interaction of the counter-propagating waves
due the continuous reflection by the gratings. When
the reflectivity of the grating is relatively weak (R ≤
30%), the structure of the grating can be calcu-
lated from the complex reflection spectrum by using
a Fourier transform[3]. For gratings with a moder-
ate reflectivity, the iterative solution of the Gel’fand-
Levitan-Marchenko (GLM) equation can yield reason-
ably accurate results[4,5], but this method suffers from
low computation efficiency. For highly reflecting Bragg
gratings, the errors of the iterative solutions do not nec-
essarily vanish, even when the number of iterations is
considerably large. An efficient method based on the
law of causality was proposed to reconstruct the grating
profile, which is referred to as the layer peeling (LP)
algorithm[6−8]. The implementation of the LP algo-
rithm presented in Ref. [8], referred to as the frequency-
domain layer peeling (FDLP) algorithm, is considered
the most efficient inverse scattering algorithm for syn-
thesis of Bragg gratings based on the coupled-wave for-
malism. The complexity of the FDLP algorithm is equal
to O(N2), compared to O(N3) of the iterative solu-
tion to the GLM equation. However, when the grating
reflectivity is high, the LP algorithm may fail to give ac-
curate results[9]. Recently, a new method, the integral
layer peeling (ILP) method, which is based on the so-
lution of the GML integral equation by a layer-peeling
procedure, was shown to lead to high accuracy in recon-
structing a strongly reflecting Bragg grating[10].

In this paper, a simple modification to the FDLP algo-
rithm is proposed and presented. It is demonstrated by

way of example that this new algorithm is highly effective
in mitigating the impact of numerical errors on the re-
construction of strongly reflecting fiber gratings. The
new method does not require the solution of the GLM
equation and therefore can be readily implemented and
executed as efficiently as the FDLP method.

The discrete model for the Bragg gratings divides the
entire grating into a series of discrete, complex reflectors
with a distance Δ between the adjacent reflectors. The
functions um and vm represent the forward and the back-
ward propagating fields, respectively. The reflection
coefficient at the back of a reflector can be derived from
that at the front of this reflector as[8]

rm+1(δ) =
vm+1

um+1
= exp(−i2δΔ)

rm(δ) − ρm

1 − ρ∗mrm(δ)
, (1)

where the parameter ρm is the complex reflection
coefficient of the mth grating segment of length Δ and
δ = β − β0 is the wavenumber detuning factor with re-
spect to the Bragg wavenumber. The function rm(δ)
represents the complex reflection spectrum at the front
of the mth reflector by taking account of the multiple
reflections from all discrete reflectors of m+1 and higher.
The corresponding impulse response can be obtained by
using Fourier transform,

hm(t) =
1
2π

∫ ∞

−∞
rm(δ) exp(−iδt)dδ. (2)

Since the optical signal does not have sufficient time
to propagate from the back reflectors, the impulse re-
sponse hm(t) at time t = 0 only depends on the com-
plex reflection coefficient of the mth reflector. More-
over, according to the definition of complex reflection
coefficients, ρm should be equal to hm(0), hence we can
determine ρm from Eq. (2). Based on this argument, the
reflection coefficients of the back reflectors can be recur-
sively computed using Eqs. (1) and (2) by the standard
LP procedure.

The LP algorithm is based on the law of causality
in the sense that, for t < 0, the impulse response hm(t)
should be equal to zero. However, Eq. (1) is derived from
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an approximate discrete model. When the grating length
Δ is sufficiently short, the well-known transfer matrix of
the uniform Bragg grating may be further approximated
by the product of two transfer matrices: one that de-
scribes a discrete reflector and the other that represents
the pure propagation of the optical fields. In this model,
the optical signal is reflected only at the front point of
the mth grating segment. This approximation is valid
for a short grating segment with weak reflection. In the
case of strong Bragg gratings, multiple reflections within
a segment cannot be neglected even for a very short grat-
ing length, and the errors caused by the approximation
accumulates along the grating and becomes significant in
extracting the grating profile, which leads to the errors
in “peeling off” the front impulse response of the target
spectrum, and hence hm(t), for t < 0, will be no longer
equal to zero. The approximate model does not obey
the causality relation in a strict sense. Consequently,
the numerical errors arising from the violation of the
causality law will accumulate along the gratings. When
the reflectivity is high, the errors at the front of gratings
increase rapidly, and the impulse response, for t < 0, will
deviate considerable from zero and in turn make a strong
impact on the reconstruction at the back of the gratings.
For this reason, the FDLP algorithm may fail to yield
accurate results when synthesizing Bragg gratings with
strong reflectivity.

To overcome the shortcoming of the FDLP method, we
propose a simple modification in the algorithm as fol-
lows. For every iteration process, the impulse response
during t < 0 is replaced with zero, whereas the one dur-
ing t ≥ 0 is retained as obtained by the standard FDLP
method. Subsequently, the reflection spectrum rm is de-
rived from the modified impulse response by using the in-
verse Fourier transform. The rest of the procedure is the
same as the FDLP algorithm as described in Fig. 1 and
hence the entire algorithm can be readily implemented.

Fig. 1. The iterative procedure in the modified LP algorithm.

To validate the modified LP method, we apply it first
to the design of a flat-top dispersion-free fiber Bragg
grating with extremely high reflectivity (99.99999%).
Figures 2(a)—(d) show the coupling coefficient function,
the reflection spectrum, the transmission spectrum, and
the time delay calculated by the modified LP, the ILP,
and the FDLP methods, respectively. The target com-
plex reflection spectrum was sampled over a bandwidth
of 8 nm with a spectral resolution of 0.005 nm. The
reflection and the transmission spectra are calculated
for the synthesized gratings by using the transfer ma-
trix method.

It is observed from Fig. 2(a) that there is considerable
discrepancy between the grating profiles synthesized by
the frequency-domain and the modified LP methods. On
the other hand, the spectra corresponding to the grating
synthesized by the modified LP method are much more
closer to the target spectrum than that for the grating by
the FDLP method, as evident from Figs. 2(b)—(d). The
time delay ripple is less than 0.6 ps within the spectral

Fig. 2. A flat-top dispersion-free grating with the reflectivity of 99.99999%, reconstructed by the modified LP algorithm (dotted
lines), the ILP algorithm (thin lines), and the FDLP algorithm (dashed lines), respectively. (a) Coupling coefficient function q;
(b) reflection spectrum; (c) transmission spectrum; (d) time delay curve. The target complex reflection spectrum (thick lines)
was sampled over a bandwidth of 8 nm with a spectral resolution of 0.005 nm.
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Fig. 3. A chirp grating with the reflectivity of 99.9%, reconstructed by the modified LP algorithm (dotted lines), the ILP
algorithm (thin lines), and the FDLP algorithm (dashed lines), respectively, for compensating the chromatic dispersion of a
standard SMF link of 80 km. (a) Coupling coefficient function q; (b) reflection spectrum; (c) transmission spectrum; (d) time
delay curve. The target complex reflection spectrum (thick lines) was sampled over a bandwidth of 8 nm with a spectral
resolution of 0.005 nm.

band of interest for these two methods. In particular, the
grating designed by the FDLP algorithm has high out-
off-band reflectivity and sharp transmission spectrum
within the spectral band of interest. In this example,
the grating profile reconstructed by the ILP method is
almost the same as the one synthesized by the modified
LP method. However, if the target spectrum of a uni-
form grating with high reflectivity was sampled over a
narrower bandwidth with a lower spectral resolution, the
results obtained by the ILP algorithm will be more accu-
rate than the one calculated by the modified LP method.

In the second example, a chirp grating with a
reflectivity of 99.9% is reconstructed by the modified LP,
the ILP, and the FDLP methods, respectively. The syn-
thesized grating is designed to compensate for the chro-
matic dispersion of a standard single-mode fiber (SMF)
link with a length of 80 km. The results of the calcula-
tion are shown in Fig. 3. The target complex reflection
spectrum was sampled over a bandwidth of 8 nm with
a spectral resolution of 0.005 nm. Figure 3(a) shows
that the FDLP and the ILP algorithms fail to give a
proper grating profile in the case of the limited sampling
bandwidth and spectral resolution. On the contrary, the
grating synthesized by the modified LP algorithm has a
correct spectrum response as evident from Figs. 3(b) and
(c).

All the LP algorithms are implemented by using the
Matlab language and run on a personal computer with a
PENTIUM R©III CPU at 866 MHz and a memory of 128
M. When the number of discrete sampling points is equal
to 1600, the runtimes of the modified LP, the ILP, and
the FDLP methods are 201.8, 202.3, and 195.5 s, respec-
tively.

By constructing the new impulse response based on
the law of causality for every iteration step, we have

developed a modified LP algorithm for synthesis of
strong Bragg gratings with high degree of accuracy and
efficiency. The modified LP method has reduced the im-
pact of the numerical errors on the reconstructed grat-
ing and hence more accurate than the FDLP algorithm.
Compared with the ILP algorithm, the modified LP al-
gorithm can obtain more accurate results in reconstruct-
ing a chirp grating with high reflectivity. However, for
a uniform grating, the ILP method will lead to higher
accuracy.
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